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Oscillatory flow in a turbulent boundary layer is modelled by using a coefficient 
of eddy viscosity whose value depends upon distance from a fixed boundary. 
A general oscillatory flow is prescribed beyond the layer, and the model is used 
to calculate the mass transport velocity induced by this within the layer. The 
result is investigated numerically for a representative distribution of eddy 
viscosity and the conclusions interpreted in terms of the mass transport induced 
by progressive and standing waves. For progressive waves, the limiting value 
of the mass transport velocity at the outer edge of the layer is the same as for 
laminar flow. For standing waves, the limiting value is reduced relative to its 
laminar value but, within the lowermost 25 % of the layer, there is a drift which 
is reversed relative to the limiting value. This is considerably stronger than its 
counterpart in the laminar case and, in view of the greater thickness of the 
turbulent layer, it  may make a dominant contribution to the net movement of 
loose bed material by a standing wave system. 

1. Introduction 
The existence of thin viscous boundary layers adjacent to boundaries in a 

vibrating fluid was shown by Longuet-Higgins (1953) to be of crucial importance 
in the determination of wave-induced mass transport. The possible relevance of 
these ideas in connexion with the wave-induced movement of suspended sediment 
has been pointed out by several authors. Amongst these, we may mention Abbott 
(1960)) who applied the ideas to the movement of suspended material in the 
Thames Estuary, Russell & Osorio (1958), who conducted experiments to de- 
termine wave-induced drift in a closed channel and Hunt & Johns (1963), who 
extended some aspects of the analysis to three-dimensional situations in both 
rotating and non-rotating systems. Amongst more recent applications, Johns 
(1967, 1968) has used the ideas to determine the pattern of tidal-induced mass 
transport in river estuaries in which the turbulence in the tidal flow is para- 
meterized in terms of a coefficient of eddy viscosity that represents a plausible 
momentum transfer process. In view of the fact that Longuet-Higgins’s analysis, 
and all extensions thereof, are within the framework of laminar flow, the predic- 
tions of the present author must be regarded as being primarily of a qualitative 
nature. This point was fully emphasized in the author’s before-mentioned 
publications. On the other hand, the experiments of Russell & Osorio (1958) 
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and also Collins (1963) indicate that the flow in the boundary layer associated 
with gravity wave motion is likely to be turbulent in conditions appropriate 
to geophysical actuality. At the same time, the mass transport velocities observed 
by Russell & Osorio beneath a progressive wave system tended to be in agreement 
with the predictions of Longuet-Higgins’s laminar theory. This circumstance led 
Longuet-Higgins, in a supplement to the work of Russell & Osorio (1958), to 
re-cast the analysis in terms of a coefficient of eddy viscosity whose value is 
dependent upon distance from the solid boundary-this being a first step towards 
an understanding of the phenomena in turbulent conditions. For progressive 
waves, the analysis reveals that the mass transport velocity at  the outer edge of 
a turbulent boundary layer is independent of the functional form of the eddy 
viscosity. This result, then, yields a possible explanation of the observations 
made by Russell & Osorio. This conclusion, however, is not applicable to the 
case of a standing wave, and, beneath this, the induced mass transport may be 
modified in important respects by the existence of a turbulent boundary layer. 
In  particular, we draw attention to the tidal flow in a river estuary wherein the 
tidal wave is rarely ever of a pure standing or progressive type. With such 
applications in mind, it is of some importance to inquire into the nature of the 
mass transport induced by a general oscillatory flow in a turbulent boundary 
layer. 

In the present paper, we use the same parametric representation of the 
turbulence as suggested by Longuet-Higgins in the supplement to Russell & 
Osorio (1958). An appropriate analysis is carried through so as to obtain an 
expression for the mass transport velocity in the boundary layer induced by a 
general oscillatory flow beyond the layer. This involves the functional specifica- 
tion of the eddy viscosity. The formula is evaluated numerically for a specification 
that represents a plausible momentum transfer process. If the general result is 
then applied to the case of an oscillation resulting from a progressive wave, 
the mass transport velocity at  the outer edge of the layer is found to be the same 
as in the laminar case-thus, in this example, confirming Longuet-Higgins’s 
analytical argument. If, however, the oscillation results from a standing wave 
system, the mass transport velocity at  the outer edge of the layer is much reduced 
relative to the laminar case. Within the boundary layer, there are other important 
differences which may lead to a different pattern of sediment transport. 

2. Formulation 
Conditions are referred to rectangular Cartesian axes Ox, Oz in which Oz is 

fixed horizontally within a fixed impermeable surface. The components of fluid 
velocity (suitably averaged so as to suppress the details of turbulent fluctuations) 
are denoted by u and w. The dominant component of the Reynolds stress 7 in 
a boundary layer of thickness O(6) is specified in terms of a coefficient of eddy 
viscosity and the instantaneous gradient of the averaged flow 

7 = - Y ~ K ( Z )  aulaz. (2.1) 
The function K(z) is specified in the boundary layer and will be chosen so as to 
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represent the gross characteristics of a physically plausible momentum transfer 
process. Accordingly, the boundary-layer equation for the averaged motion takes 
the form 

whilst for an incompressible fluid continuity of mass requires that 

au aw 
ax az 
-+- = 0. (2.3) 

Additionally, we suppose that the horizontal pressure gradient within the 
boundary layer is equal to its value just beyond the layer where the mainstream 
velocity is U(x ,  t ) .  In (2.2), we therefore write 

lap au au --_ - - -+u-, 
pax at ax 

and apply the usual boundary conditions 

u = w = O  at z = O  (2.5) 

and u - U when z % &  (2.6) 

E U ~ ( X )  eiat, (2.7) 

The mainstream is now taken to be a small-amplitude oscillatory flow and to be 
represented by the real part of 

where 8 is a small ordering parameter. The horizontal velocity in the boundary 
layer is then expanded as a power series in E in the form 

u = €U,+€2U2+ .... (2.8) 

!q = (V/2V)*Z, (2.9) 

Within the boundary layer, we introduce a non-dimensional variable 7 by 
writing 

and deduce from (2.3) and (2.5) that 

By substitution in (2.2) from (2.4), (2.9) and (2.10), we then obtain 

(2.10) 

Since U = O(E) ,  the leading term in the expansion (2 .8)  satisfies 

(2.12) 

and by virtue of (2.7), we are led to propose a solution for u1 in the form 

u1 = Ul(x) [ l -  F(!q)] eid, (2.13) 

where only the real part is to be retained. The function F is found to satisfy 

$ ( K E ) - Z i F  = 0, (2.14) 
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whilst the boundary conditions (2.5) and (2.6) lead to 

P(0) = 1 ;  P(co) = 0. (2.15) 

The second-order term in (2.8) has a time-independent component & in 
addition to an oscillatory component. The former of these satisfies 

(2.16) 

where the horizontal overbar denotes the mean value. The condition of no slippage 

(2.17) 
at the surface leads to 

u,=O at y = O  

but, as has been pointed out by Stuart (1966) and Riley (1965), it is not possible 
to make = 0 at 7 = m within the framework of the single boundary-layer 
structure considered in this paper. The best that we can do is to satisfy the con- 
dition 

This would then form the boundary condition at the inner edge of a second boun- 
dary layer in which 

Bearing in mind that only the real part of u1 has significance, the introduction 
of (2.13) into (2.16) reveals that is given by 

__ 

- 

u2 finite at  7 = co. (2.18) 

decays to zero. 

where the asterisk denotes the complex conjugate and only the real part of < 
is to be retained. We therefore write a solution for < in the form 

(2.20) 

subject to G(0) = 0; G(7) finite as r-tco. (2.22) 

3. Solution of equations 
For a specified functional form of K ,  the solution of (2.14) subject to (2.15) can, 

in general, only be obtained by numerical integration. On the other hand, the 
solution of (2.21) subject to (2.22) can be expressed in terms of relatively simple 
quadratures involving P. This we now proceed to do. From (2.14), we see that 

and on defining K = 1 a t  7 = 0 this yields 
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Hence, (2.21) may be written 

This equation may now be integrated from 'I = 0 to 7 by using the boundary 
conditions (2.15) together with a further application of (3.1). This procedure 

~ 

yields 

(3.3) 

where Cis a constant of integration. Both the integrals in (3.3) may be evaluated 
explicitly in terms of F ,  thus yielding an expression for dGjd7 free from quad- 
ratures. An integration by parts gives 

Hence, by use of (2.14) and (2.15), it follows that 

On separately equating real and imaginary parts in (3.5), we find that 

and (3.7) 

The insertion of these expressions in (3.3) then leads to 

-ti K -  - {F'(o)}* F*  - F'(0) F*] . (3.8) [ 
We now choose C so as to ensure that G remains finite as 7 -+ 00. Since F -+ 0 
as y -+ 00, an infinite value of G can only result from the terms independent of 7 
on the right-hand side of (3.8). The occurrence of such terms may be excluded 
by choosing 
in which case 

C = - -  i i{F'( O ) } * ,  (3.9) 

dF* d F  

drl 4 
+ yF* - li K-+ I i K -  F* - BiF'((0) F*. (3.10) 

An integration if (3.10) subject to G(0) = 0 therefore yields 

(3.11) 



182 B. Johns 

Finally, algebraic manipulation of (3.1 1)  leads to the result 

In particular, as 7 -+ 00, 

dF 2i7+F’(O) 
K 

G -+ifo F*[%+ (3.13) 

We may now use (3.12) to compute the mass transport, or Lagrangian drift 
velocity, within the boundary layer. On using the well-known result of Longuet- 
Higgins (1953), this is found to be given by the real part of 

B = - 1 H ( 7 )  UF-, dU1 
tT dx (3.14) 

where 

d7 ’ 
H ( 7 )  = G(T,J)+$K 1 - 2 R e P + l F ~ 2 - ~ ~ ]  (3.15) 

and, as 7 --f 00, H N &~+G(co).  (3.16) 

4. Numerical solution 
In order to proceed to a numerical evaluation of the formulae in 3 3, we must 

specify the functional form of K .  In  the present paper, this is chosen so as to 
model a distribution of turbulence, the intensity of which increases outwards 
from the fixed boundary. The physical principle upon which the choice is made 
is simply that turbulence tends to be inhibited on approaching the surface. 
Accordingly, we take a representative distribution to be given by 

K = K,+(l-K,)e-q. (4.1) 

With this specification, we see that K = 1 a t  7 = 0 (as required earlier), and 
K = K ,  as 7 -+ CQ. With a view to obtaining a numerical solution of (2.14) 
subject to (2.15), it  is necessary to apply the outer boundary condition at  a 
suitably large (but finite) value of 7 (say rl), and to replace the differential 
equation by a sequence of difference equations. On using central difference 
representations of the derivatives, and writing 

r = j s  ( j = O , 1 , 2  ,..., n; n8=q1), 

these are found to have the form 

Kjr$+l- 2 4  + 441 K;[$+l - qP1] - 2 i 4 = 0  ( j = l , 2  ,..., n-1). (4.2) 6 2  +- 2s  

From (2.15), the boundary conditions which complete this set are 

F, = 1,  F, = 0. (4.3) 

In  the present numerical evaluations, (4.2) and (4.3) have been solved by an 
iterative technique starting from an initial guessed solution. Having thus com- 
puted F at a discrete sequence of points, the definite integral of any expression 
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involving F may be calculated by application of the trapezoidal rule. This 
scheme has been programmed for the computation of the functions P and H 
with K given by (4.1), the finite step length being decreased until two successive 
approximations are within a specified tolerance. 

In  these numerical computations, the parameter K ,  was chosen to have the 
values 1.0 (with qI = lo), corresponding to the laminar case, and 100.0 (with 
q1 = 60) corresponding to the turbulent case. This latter value of K,,  when 
applied to oscillations of a tidal scale, is suggested by calculations undertaken 
by the author of the flow in a tidal estuary (Johns 1966, 1967). The variation of 
the function P is shown in figure 1, the inset representing the laminar case. 
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FIGURE 1. Variation of F with 7 in laminar and turbulent cases. 

Inspection reveals that the choices of the parameter ql are satisfactory in view 
of the fact that the outer boundary conditions are effectively satisfied for q < ql. 
For the laminar case, the boundary-layer thickness is about 5(2v/u)* whilst for 
the turbulent case it is about 50(2v/v)*.  The overall profiles of P in the two cases 
are very similar. 

The variation of H with 7 is shown in figure 2, the inset again representing 
the laminar case. With a view to intepreting this in terms of the mass transport 
velocity induced by an oscillatory wave motion, it is convenient to specify first 
a progressive wave for which the surface displacement is given by 

and secaadly a standing wave for which 

The velocity potentials corresponding to these are respectively 

(= acos(kx+ut), (4.4) 

( = a cos kx cos ut.  (4.5) 

au cosh k(z + I t )  
k sinhkh 

# = - -  sin (kx + u t )  
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and 

with associated values of the bottom velocity obtainable from 

and 
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U,(X) = - - e ikz  

U,(X) = -___ sinh kh sin kx. 
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H 

(4.7) 
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H 
FIGURE 2. Variation of H with 7 in laminar and turbulent ceses. 

On using the formula (3.14), and taking the real part, we find that the associated 
Lagrangian drift velocities are given by 

and 
- a2ka u =  . sin 2kxRe H(7). 

2 smh2 kh 

(4.10) 

(4.11) 

These results, together with the numerical values of H in figure 2, have several 
interesting implications. We see that in both the laminar and turbulent cases 

IrnH(7) N 1.25, (4.12) 

for sufficiently large values of 7. In other words, the mass transport velocity in- 
duced at  the outer edge of the layer by a progressive wave is the same in both 
cases. This is in accord with the arguments advanced in this connexion by 
Longuet-Higgins in the supplement to Russell & Osorio (1958). It should also 
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be noted that, within the boundary layer, the maximum drift velocity is slightly 
greater in the laminar case than in the turbulent case. 

For a standing wave, the situation a t  the outer edge of the layer is significantly 
different. I n  the laminar case, the limiting value of ReH(7) is -0.75, whilst 
in the turbulent case it is approximately -0.34. I n  other words, the mass 
transport velocity induced a t  the outer edge of the layer by a standing wave is 
substantially less in the turbulent case than in the laminar case. At the same time, 
the turbulent boundary layer leads to a strong drift within the lowermost 25 % 
of the layer in a direction that is opposite to its limiting value. This is in marked 
contrast to the laminar case, where the corresponding drift takes place within 
the lowermost 10% of the layer, and is about 80% less as regards maximum 
magnitude. 

From the point of view of the application of these results to the determination 
of the sediment transport induced by a wave motion, it should be observed that 
the thickness of the turbulent layer is much greater than that of the laminar 
layer. I n  the laminar case, a suspension of loose bed material will probably be 
present at the outer edge of the layer, and the drift velocity at this level will 
probably give an indication of the direction and magnitude of the sediment 
transport. I n  the turbulent case, the greater thickness of the layer is quite likely 
to be such that there will be little sediment in suspension at the outer edge. Any 
suspension that does exist will be densest in the lowermost parts of the layer 
adjacent to the fixed boundary. Accordingly, on general grounds, we might 
expect a progressive wave motion to transport less suspended material in the 
turbulent boundary layer than in the laminar layer. A similar remark applies to 
a standing wave system. In  the turbulent layer, the existence of the strong drift 
within the lowermost 25 YO of that layer will probably be the dominant mechanism 
controlling the movement of loose bed material. It is possible, then, that the 
direction of the net sediment movement beneath a standing wave will be different 
in the two cases. 
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